#include #include #include "main.h" #include "lcd_i2c.h" #include "icm20948.h" #include "FusionAhrs.h" #include "moto_config.h" #include "gc9a01.h" I2C_HandleTypeDef hi2c1; SPI_HandleTypeDef hspi1; UART_HandleTypeDef huart2; FusionAhrs ahrs; MotoData_t moto_data; MotoStats_t moto_stats = {0}; uint32_t display_mode = 0; // Mode d'affichage (0=angles, 1=jauges, 2=horizon) uint32_t mode_change_time = 0; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); static void MX_USART2_UART_Init(void); static void MX_SPI1_Init(void); void Update_TFT_Display(void); int __io_putchar(int ch) { HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, HAL_MAX_DELAY); return ch; } // Variables pour le filtrage du magnétomètre float mx_filtered = 0.0f, my_filtered = 0.0f, mz_filtered = 0.0f; int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_I2C1_Init(); MX_USART2_UART_Init(); MX_SPI1_Init(); // Initialisation de l'écran lcd_init(); lcd_clear(); lcd_set_cursor(0, 0); lcd_print("MOTO IMU SYSTEM"); HAL_Delay(1000); if (!GC9A01_Init(&hspi1)) { printf("Erreur initialisation écran TFT\r\n"); } else { printf("Écran TFT initialisé\r\n"); GC9A01_FillScreen(GC9A01_BLACK); GC9A01_DrawString(60, 120, "MOTO IMU", GC9A01_GREEN, GC9A01_BLACK, 2); HAL_Delay(2000); GC9A01_FillScreen(GC9A01_BLACK); } // Initialisation de l'IMU icm20948_init(); // Initialisation de la fusion AHRS FusionAhrsInitialise(&ahrs); FusionAhrsSettings settings = { .convention = FusionConventionNed, // North-East-Down pour véhicule .gain = 0.75f, // Gain plus élevé pour réactivité sur moto .gyroscopeRange = 2000.0f, // Range du gyroscope en dps .accelerationRejection = 15.0f, // Rejet modéré (vibrations moto) .magneticRejection = 30.0f, // Rejet élevé (interférences métalliques) .recoveryTriggerPeriod = (int)(2.0f / MOTO_SAMPLE_PERIOD) // 2 secondes }; FusionAhrsSetSettings(&ahrs, &settings); // Initialisation des données moto Moto_InitData(&moto_data); uint32_t last_time = HAL_GetTick(); uint32_t display_update_counter = 0; while (1) { uint32_t current_time = HAL_GetTick(); float dt = (current_time - last_time) / 1000.0f; if (dt >= MOTO_SAMPLE_PERIOD) { float ax, ay, az; // Accéléromètre float gx, gy, gz; // Gyroscope float mx, my, mz; // Magnétomètre // Lecture des capteurs icm20948_read_accel(&ax, &ay, &az); icm20948_read_gyro(&gx, &gy, &gz); icm20948_read_mag(&mx, &my, &mz); // Calibration et filtrage du magnétomètre Moto_CalibrateMagnetometer(&mx, &my, &mz); mx_filtered = MOTO_MAG_FILTER_ALPHA * mx + (1.0f - MOTO_MAG_FILTER_ALPHA) * mx_filtered; my_filtered = MOTO_MAG_FILTER_ALPHA * my + (1.0f - MOTO_MAG_FILTER_ALPHA) * my_filtered; mz_filtered = MOTO_MAG_FILTER_ALPHA * mz + (1.0f - MOTO_MAG_FILTER_ALPHA) * mz_filtered; // Préparation des données pour Fusion FusionVector gyroscope = {{gx, gy, gz}}; FusionVector accelerometer = {{ax, ay, az}}; FusionVector magnetometer = {{mx_filtered, my_filtered, mz_filtered}}; // Mise à jour AHRS FusionAhrsUpdate(&ahrs, gyroscope, accelerometer, magnetometer, dt); // Récupération des angles d'Euler FusionEuler euler = FusionQuaternionToEuler(FusionAhrsGetQuaternion(&ahrs)); float roll = euler.angle.roll; float pitch = euler.angle.pitch; float yaw = euler.angle.yaw; // Vérification de la phase d'initialisation FusionAhrsFlags flags = FusionAhrsGetFlags(&ahrs); moto_data.is_initializing = flags.initialising; // Mise à jour de l'état de la moto Moto_UpdateState(&moto_data, roll, pitch, yaw, gx, gy, gz); Moto_FilterAngles(&moto_data); Moto_UpdateStats(&moto_stats, &moto_data, gx, gy, gz); // Mise à jour de l'affichage (toutes les 5 itérations = ~50ms) /*display_update_counter++; if (display_update_counter >= 5) { char buffer[21]; for (int line = 0; line < 4; line++) { Moto_FormatDisplay(&moto_data, line, buffer); lcd_set_cursor(line, 0); lcd_print(buffer); } display_update_counter = 0; }*/ // Mise à jour de l'affichage (toutes les 5 itérations = ~50ms) display_update_counter++; if (display_update_counter >= 5) { // Affichage LCD existant (gardé pour debug/backup) char buffer[21]; for (int line = 0; line < 4; line++) { Moto_FormatDisplay(&moto_data, line, buffer); lcd_set_cursor(line, 0); lcd_print(buffer); } // Nouvel affichage TFT Update_TFT_Display(); display_update_counter = 0; } // LED d'état switch (moto_data.state) { case MOTO_STATE_NORMAL: HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET); break; case MOTO_STATE_WARNING: case MOTO_STATE_RAPID_TURN: // Clignotement lent if ((current_time / 500) % 2) { HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET); } break; case MOTO_STATE_DANGER: case MOTO_STATE_POSSIBLE_CRASH: // Clignotement rapide if ((current_time / 100) % 2) { HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET); } break; default: HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET); break; } // Debug UART (toutes les 50 itérations = ~500ms) static uint32_t uart_counter = 0; uart_counter++; if (uart_counter >= 50) { FusionAhrsInternalStates states = FusionAhrsGetInternalStates(&ahrs); printf("R:%.1f P:%.1f Y:%.1f | St:%s | AE:%.1f ME:%.1f | AI:%d MI:%d | Smp:%lu\r\n", roll, pitch, yaw, Moto_GetStateString(moto_data.state), states.accelerationError, states.magneticError, states.accelerometerIgnored, states.magnetometerIgnored, moto_stats.total_samples); uart_counter = 0; } // Mise à jour du timestamp moto_data.last_update_time = current_time; last_time = current_time; } // Petite pause pour éviter la surcharge du processeur HAL_Delay(10); } } // Fonction de mise à jour de l'affichage TFT (à ajouter avant main()) void Update_TFT_Display(void) { float roll = moto_data.roll_filtered; float pitch = moto_data.pitch_filtered; float yaw = moto_data.yaw_filtered; // Changement de mode d'affichage toutes les 5 secondes uint32_t current_time = HAL_GetTick(); if (current_time - mode_change_time > 5000) { display_mode = (display_mode + 1) % 3; mode_change_time = current_time; GC9A01_FillScreen(GC9A01_BLACK); // Effacer l'écran } switch (display_mode) { case 0: // Mode angles numériques { // Titre GC9A01_DrawString(80, 10, "MOTO IMU", GC9A01_WHITE, GC9A01_BLACK, 2); // Angles char buffer[20]; snprintf(buffer, sizeof(buffer), "Roll: %6.1f°", roll); uint16_t roll_color = (fabsf(roll) > 30) ? GC9A01_RED : GC9A01_GREEN; GC9A01_DrawString(20, 50, buffer, roll_color, GC9A01_BLACK, 1); snprintf(buffer, sizeof(buffer), "Pitch: %5.1f°", pitch); uint16_t pitch_color = (fabsf(pitch) > 15) ? GC9A01_ORANGE : GC9A01_GREEN; GC9A01_DrawString(20, 70, buffer, pitch_color, GC9A01_BLACK, 1); snprintf(buffer, sizeof(buffer), "Yaw: %7.1f°", yaw); GC9A01_DrawString(20, 90, buffer, GC9A01_CYAN, GC9A01_BLACK, 1); // État de la moto const char* state_str = Moto_GetStateString(moto_data.state); uint16_t state_color; switch (moto_data.state) { case MOTO_STATE_NORMAL: state_color = GC9A01_GREEN; break; case MOTO_STATE_WARNING: state_color = GC9A01_YELLOW; break; case MOTO_STATE_DANGER: case MOTO_STATE_POSSIBLE_CRASH: state_color = GC9A01_RED; break; case MOTO_STATE_WHEELIE: case MOTO_STATE_STOPPIE: state_color = GC9A01_MAGENTA; break; case MOTO_STATE_RAPID_TURN: state_color = GC9A01_ORANGE; break; default: state_color = GC9A01_WHITE; break; } GC9A01_DrawString(20, 120, "Etat:", GC9A01_WHITE, GC9A01_BLACK, 1); GC9A01_DrawString(20, 135, state_str, state_color, GC9A01_BLACK, 1); // Indicateur d'initialisation if (moto_data.is_initializing) { GC9A01_DrawString(50, 180, "INIT...", GC9A01_YELLOW, GC9A01_BLACK, 2); } // Statistiques char stats_buffer[30]; snprintf(stats_buffer, sizeof(stats_buffer), "Samples: %lu", moto_stats.total_samples); GC9A01_DrawString(10, 210, stats_buffer, GC9A01_GRAY, GC9A01_BLACK, 1); break; } case 1: // Mode jauges { GC9A01_DrawString(90, 5, "JAUGES", GC9A01_WHITE, GC9A01_BLACK, 1); // Jauge de roulis (gauche) uint16_t roll_color = (fabsf(roll) > 30) ? GC9A01_RED : (fabsf(roll) > 15) ? GC9A01_YELLOW : GC9A01_GREEN; GC9A01_DrawGauge(60, 80, 40, roll, -45.0f, 45.0f, roll_color, "ROLL"); // Jauge de tangage (droite) uint16_t pitch_color = (fabsf(pitch) > 20) ? GC9A01_RED : (fabsf(pitch) > 10) ? GC9A01_YELLOW : GC9A01_GREEN; GC9A01_DrawGauge(180, 80, 40, pitch, -30.0f, 30.0f, pitch_color, "PITCH"); // Boussole pour le yaw (en bas) GC9A01_DrawCircle(120, 180, 35, GC9A01_WHITE); float yaw_rad = yaw * M_PI / 180.0f; int16_t yaw_x = 120 + 30 * sin(yaw_rad); int16_t yaw_y = 180 - 30 * cos(yaw_rad); GC9A01_DrawLine(120, 180, yaw_x, yaw_y, GC9A01_CYAN); GC9A01_FillCircle(yaw_x, yaw_y, 3, GC9A01_CYAN); GC9A01_DrawString(105, 220, "YAW", GC9A01_WHITE, GC9A01_BLACK, 1); // État en bas GC9A01_DrawStateIndicator(Moto_GetStateString(moto_data.state), (moto_data.state == MOTO_STATE_NORMAL) ? GC9A01_GREEN : GC9A01_RED); break; } case 2: // Mode horizon artificiel { GC9A01_DrawString(70, 5, "HORIZON", GC9A01_WHITE, GC9A01_BLACK, 1); // Horizon artificiel principal GC9A01_DrawAngleIndicator(roll, pitch); // Informations complémentaires autour char info_buffer[15]; // Yaw en haut à droite snprintf(info_buffer, sizeof(info_buffer), "Y:%.0f°", yaw); GC9A01_DrawString(180, 25, info_buffer, GC9A01_CYAN, GC9A01_BLACK, 1); // Indicateurs de seuils if (fabsf(roll) > 30) { GC9A01_DrawString(10, 200, "ROULIS!", GC9A01_RED, GC9A01_BLACK, 1); } if (fabsf(pitch) > 20) { GC9A01_DrawString(170, 200, "TANGAGE!", GC9A01_RED, GC9A01_BLACK, 1); } // Grille d'aide (lignes de référence) for (int i = -40; i <= 40; i += 20) { if (i != 0) { uint16_t y_pos = 120 + i; if (y_pos > 70 && y_pos < 170) { GC9A01_DrawLine(70, y_pos, 90, y_pos, GC9A01_GRAY); GC9A01_DrawLine(150, y_pos, 170, y_pos, GC9A01_GRAY); } } } // État actuel GC9A01_DrawStateIndicator(Moto_GetStateString(moto_data.state), (moto_data.state == MOTO_STATE_NORMAL) ? GC9A01_GREEN : GC9A01_RED); break; } } } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { Error_Handler(); } /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 64; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 10; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.Timing = 0x10D19CE4; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /** Configure Analogue filter */ if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { Error_Handler(); } /** Configure Digital filter */ if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, SMPS_EN_Pin|SMPS_V1_Pin|SMPS_SW_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_2, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1|LD4_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : B1_Pin */ GPIO_InitStruct.Pin = B1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : SMPS_EN_Pin SMPS_V1_Pin SMPS_SW_Pin */ GPIO_InitStruct.Pin = SMPS_EN_Pin|SMPS_V1_Pin|SMPS_SW_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : SMPS_PG_Pin */ GPIO_InitStruct.Pin = SMPS_PG_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(SMPS_PG_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : PB0 PB1 PB2 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : LD4_Pin */ GPIO_InitStruct.Pin = LD4_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD4_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */