#include #include #include "main.h" #include "lcd_i2c.h" #include "icm20948.h" #include "FusionAhrs.h" #include "moto_config.h" I2C_HandleTypeDef hi2c1; UART_HandleTypeDef huart2; FusionAhrs ahrs; MotoData_t moto_data; MotoStats_t moto_stats = {0}; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); static void MX_USART2_UART_Init(void); int __io_putchar(int ch) { HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, HAL_MAX_DELAY); return ch; } // Variables pour le filtrage du magnétomètre float mx_filtered = 0.0f, my_filtered = 0.0f, mz_filtered = 0.0f; int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_I2C1_Init(); MX_USART2_UART_Init(); // Initialisation de l'écran lcd_init(); lcd_clear(); lcd_set_cursor(0, 0); lcd_print("MOTO IMU SYSTEM"); HAL_Delay(1000); // Initialisation de l'IMU icm20948_init(); // Initialisation de la fusion AHRS FusionAhrsInitialise(&ahrs); FusionAhrsSettings settings = { .convention = FusionConventionNed, // North-East-Down pour véhicule .gain = 0.75f, // Gain plus élevé pour réactivité sur moto .gyroscopeRange = 2000.0f, // Range du gyroscope en dps .accelerationRejection = 15.0f, // Rejet modéré (vibrations moto) .magneticRejection = 30.0f, // Rejet élevé (interférences métalliques) .recoveryTriggerPeriod = (int)(2.0f / MOTO_SAMPLE_PERIOD) // 2 secondes }; FusionAhrsSetSettings(&ahrs, &settings); // Initialisation des données moto Moto_InitData(&moto_data); uint32_t last_time = HAL_GetTick(); uint32_t init_start_time = last_time; uint32_t display_update_counter = 0; while (1) { uint32_t current_time = HAL_GetTick(); float dt = (current_time - last_time) / 1000.0f; if (dt >= MOTO_SAMPLE_PERIOD) { float ax, ay, az; // Accéléromètre float gx, gy, gz; // Gyroscope float mx, my, mz; // Magnétomètre // Lecture des capteurs icm20948_read_accel(&ax, &ay, &az); icm20948_read_gyro(&gx, &gy, &gz); icm20948_read_mag(&mx, &my, &mz); // Calibration et filtrage du magnétomètre Moto_CalibrateMagnetometer(&mx, &my, &mz); mx_filtered = MOTO_MAG_FILTER_ALPHA * mx + (1.0f - MOTO_MAG_FILTER_ALPHA) * mx_filtered; my_filtered = MOTO_MAG_FILTER_ALPHA * my + (1.0f - MOTO_MAG_FILTER_ALPHA) * my_filtered; mz_filtered = MOTO_MAG_FILTER_ALPHA * mz + (1.0f - MOTO_MAG_FILTER_ALPHA) * mz_filtered; // Préparation des données pour Fusion FusionVector gyroscope = {gx, gy, gz}; FusionVector accelerometer = {ax, ay, az}; FusionVector magnetometer = {mx_filtered, my_filtered, mz_filtered}; // Mise à jour AHRS FusionAhrsUpdate(&ahrs, gyroscope, accelerometer, magnetometer, dt); // Récupération des angles d'Euler FusionEuler euler = FusionQuaternionToEuler(FusionAhrsGetQuaternion(&ahrs)); float roll = euler.angle.roll; float pitch = euler.angle.pitch; float yaw = euler.angle.yaw; // Vérification de la phase d'initialisation FusionAhrsFlags flags = FusionAhrsGetFlags(&ahrs); moto_data.is_initializing = flags.initialising; // Mise à jour de l'état de la moto Moto_UpdateState(&moto_data, roll, pitch, yaw, gx, gy, gz); Moto_FilterAngles(&moto_data); Moto_UpdateStats(&moto_stats, &moto_data, gx, gy, gz); // Mise à jour de l'affichage (toutes les 5 itérations = ~50ms) display_update_counter++; if (display_update_counter >= 5) { char buffer[21]; for (int line = 0; line < 4; line++) { Moto_FormatDisplay(&moto_data, line, buffer); lcd_set_cursor(line, 0); lcd_print(buffer); } display_update_counter = 0; } // LED d'état switch (moto_data.state) { case MOTO_STATE_NORMAL: HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET); break; case MOTO_STATE_WARNING: case MOTO_STATE_RAPID_TURN: // Clignotement lent if ((current_time / 500) % 2) { HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET); } break; case MOTO_STATE_DANGER: case MOTO_STATE_POSSIBLE_CRASH: // Clignotement rapide if ((current_time / 100) % 2) { HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET); } break; default: HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET); break; } // Debug UART (toutes les 50 itérations = ~500ms) static uint32_t uart_counter = 0; uart_counter++; if (uart_counter >= 50) { FusionAhrsInternalStates states = FusionAhrsGetInternalStates(&ahrs); printf("R:%.1f P:%.1f Y:%.1f | St:%s | AE:%.1f ME:%.1f | AI:%d MI:%d | Smp:%lu\r\n", roll, pitch, yaw, Moto_GetStateString(moto_data.state), states.accelerationError, states.magneticError, states.accelerometerIgnored, states.magnetometerIgnored, moto_stats.total_samples); uart_counter = 0; } // Mise à jour du timestamp moto_data.last_update_time = current_time; last_time = current_time; } // Petite pause pour éviter la surcharge du processeur HAL_Delay(20); } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { Error_Handler(); } /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 64; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 10; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } } static void MX_I2C1_Init(void) { hi2c1.Instance = I2C1; hi2c1.Init.Timing = 0x10D19CE4; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { Error_Handler(); } if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK) { Error_Handler(); } } static void MX_USART2_UART_Init(void) { huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, SMPS_EN_Pin|SMPS_V1_Pin|SMPS_SW_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : B1_Pin */ GPIO_InitStruct.Pin = B1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : SMPS_EN_Pin SMPS_V1_Pin SMPS_SW_Pin */ GPIO_InitStruct.Pin = SMPS_EN_Pin|SMPS_V1_Pin|SMPS_SW_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : SMPS_PG_Pin */ GPIO_InitStruct.Pin = SMPS_PG_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(SMPS_PG_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LD4_Pin */ GPIO_InitStruct.Pin = LD4_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD4_GPIO_Port, &GPIO_InitStruct); } void Error_Handler(void) { __disable_irq(); while (1) { } } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */