stm32-moto/Core/Src/main.c

634 lines
21 KiB
C

#include <stdio.h>
#include <math.h>
#include "main.h"
#include "lcd_i2c.h"
#include "icm20948.h"
#include "FusionAhrs.h"
#include "moto_config.h"
#include "gc9a01.h"
I2C_HandleTypeDef hi2c1;
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart2;
FusionAhrs ahrs;
MotoData_t moto_data;
MotoStats_t moto_stats = {0};
uint32_t display_mode = 0; // Mode d'affichage (0=angles, 1=jauges, 2=horizon)
uint32_t mode_change_time = 0;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_SPI1_Init(void);
void Update_TFT_Display(void);
int __io_putchar(int ch) {
HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
// Variables pour le filtrage du magnétomètre
float mx_filtered = 0.0f, my_filtered = 0.0f, mz_filtered = 0.0f;
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_I2C1_Init();
MX_USART2_UART_Init();
MX_SPI1_Init();
// Initialisation de l'écran
lcd_init();
lcd_clear();
lcd_set_cursor(0, 0);
lcd_print("MOTO IMU SYSTEM");
HAL_Delay(1000);
if (!GC9A01_Init(&hspi1)) {
printf("Erreur initialisation écran TFT\r\n");
} else {
printf("Écran TFT initialisé\r\n");
GC9A01_FillScreen(GC9A01_BLACK);
GC9A01_DrawString(60, 120, "MOTO IMU", GC9A01_GREEN, GC9A01_BLACK, 2);
HAL_Delay(2000);
GC9A01_FillScreen(GC9A01_BLACK);
}
// Initialisation de l'IMU
icm20948_init();
// Initialisation de la fusion AHRS
FusionAhrsInitialise(&ahrs);
FusionAhrsSettings settings = {
.convention = FusionConventionNed, // North-East-Down pour véhicule
.gain = 0.75f, // Gain plus élevé pour réactivité sur moto
.gyroscopeRange = 2000.0f, // Range du gyroscope en dps
.accelerationRejection = 15.0f, // Rejet modéré (vibrations moto)
.magneticRejection = 30.0f, // Rejet élevé (interférences métalliques)
.recoveryTriggerPeriod = (int)(2.0f / MOTO_SAMPLE_PERIOD) // 2 secondes
};
FusionAhrsSetSettings(&ahrs, &settings);
// Initialisation des données moto
Moto_InitData(&moto_data);
uint32_t last_time = HAL_GetTick();
uint32_t display_update_counter = 0;
while (1) {
uint32_t current_time = HAL_GetTick();
float dt = (current_time - last_time) / 1000.0f;
if (dt >= MOTO_SAMPLE_PERIOD) {
float ax, ay, az; // Accéléromètre
float gx, gy, gz; // Gyroscope
float mx, my, mz; // Magnétomètre
// Lecture des capteurs
icm20948_read_accel(&ax, &ay, &az);
icm20948_read_gyro(&gx, &gy, &gz);
icm20948_read_mag(&mx, &my, &mz);
// Calibration et filtrage du magnétomètre
Moto_CalibrateMagnetometer(&mx, &my, &mz);
mx_filtered = MOTO_MAG_FILTER_ALPHA * mx + (1.0f - MOTO_MAG_FILTER_ALPHA) * mx_filtered;
my_filtered = MOTO_MAG_FILTER_ALPHA * my + (1.0f - MOTO_MAG_FILTER_ALPHA) * my_filtered;
mz_filtered = MOTO_MAG_FILTER_ALPHA * mz + (1.0f - MOTO_MAG_FILTER_ALPHA) * mz_filtered;
// Préparation des données pour Fusion
FusionVector gyroscope = {{gx, gy, gz}};
FusionVector accelerometer = {{ax, ay, az}};
FusionVector magnetometer = {{mx_filtered, my_filtered, mz_filtered}};
// Mise à jour AHRS
FusionAhrsUpdate(&ahrs, gyroscope, accelerometer, magnetometer, dt);
// Récupération des angles d'Euler
FusionEuler euler = FusionQuaternionToEuler(FusionAhrsGetQuaternion(&ahrs));
float roll = euler.angle.roll;
float pitch = euler.angle.pitch;
float yaw = euler.angle.yaw;
// Vérification de la phase d'initialisation
FusionAhrsFlags flags = FusionAhrsGetFlags(&ahrs);
moto_data.is_initializing = flags.initialising;
// Mise à jour de l'état de la moto
Moto_UpdateState(&moto_data, roll, pitch, yaw, gx, gy, gz);
Moto_FilterAngles(&moto_data);
Moto_UpdateStats(&moto_stats, &moto_data, gx, gy, gz);
// Mise à jour de l'affichage (toutes les 5 itérations = ~50ms)
/*display_update_counter++;
if (display_update_counter >= 5) {
char buffer[21];
for (int line = 0; line < 4; line++) {
Moto_FormatDisplay(&moto_data, line, buffer);
lcd_set_cursor(line, 0);
lcd_print(buffer);
}
display_update_counter = 0;
}*/
// Mise à jour de l'affichage (toutes les 5 itérations = ~50ms)
display_update_counter++;
if (display_update_counter >= 5) {
// Affichage LCD existant (gardé pour debug/backup)
char buffer[21];
for (int line = 0; line < 4; line++) {
Moto_FormatDisplay(&moto_data, line, buffer);
lcd_set_cursor(line, 0);
lcd_print(buffer);
}
// Nouvel affichage TFT
Update_TFT_Display();
display_update_counter = 0;
}
// LED d'état
switch (moto_data.state) {
case MOTO_STATE_NORMAL:
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
break;
case MOTO_STATE_WARNING:
case MOTO_STATE_RAPID_TURN:
// Clignotement lent
if ((current_time / 500) % 2) {
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET);
} else {
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
}
break;
case MOTO_STATE_DANGER:
case MOTO_STATE_POSSIBLE_CRASH:
// Clignotement rapide
if ((current_time / 100) % 2) {
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET);
} else {
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
}
break;
default:
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET);
break;
}
// Debug UART (toutes les 50 itérations = ~500ms)
static uint32_t uart_counter = 0;
uart_counter++;
if (uart_counter >= 50) {
FusionAhrsInternalStates states = FusionAhrsGetInternalStates(&ahrs);
printf("R:%.1f P:%.1f Y:%.1f | St:%s | AE:%.1f ME:%.1f | AI:%d MI:%d | Smp:%lu\r\n",
roll, pitch, yaw,
Moto_GetStateString(moto_data.state),
states.accelerationError, states.magneticError,
states.accelerometerIgnored, states.magnetometerIgnored,
moto_stats.total_samples);
uart_counter = 0;
}
// Mise à jour du timestamp
moto_data.last_update_time = current_time;
last_time = current_time;
}
// Petite pause pour éviter la surcharge du processeur
HAL_Delay(10);
}
}
// Fonction de mise à jour de l'affichage TFT (à ajouter avant main())
void Update_TFT_Display(void) {
float roll = moto_data.roll_filtered;
float pitch = moto_data.pitch_filtered;
float yaw = moto_data.yaw_filtered;
// Changement de mode d'affichage toutes les 5 secondes
uint32_t current_time = HAL_GetTick();
if (current_time - mode_change_time > 5000) {
display_mode = (display_mode + 1) % 3;
mode_change_time = current_time;
GC9A01_FillScreen(GC9A01_BLACK); // Effacer l'écran
}
switch (display_mode) {
case 0: // Mode angles numériques
{
// Titre
GC9A01_DrawString(80, 10, "MOTO IMU", GC9A01_WHITE, GC9A01_BLACK, 2);
// Angles
char buffer[20];
snprintf(buffer, sizeof(buffer), "Roll: %6.1f°", roll);
uint16_t roll_color = (fabsf(roll) > 30) ? GC9A01_RED : GC9A01_GREEN;
GC9A01_DrawString(20, 50, buffer, roll_color, GC9A01_BLACK, 1);
snprintf(buffer, sizeof(buffer), "Pitch: %5.1f°", pitch);
uint16_t pitch_color = (fabsf(pitch) > 15) ? GC9A01_ORANGE : GC9A01_GREEN;
GC9A01_DrawString(20, 70, buffer, pitch_color, GC9A01_BLACK, 1);
snprintf(buffer, sizeof(buffer), "Yaw: %7.1f°", yaw);
GC9A01_DrawString(20, 90, buffer, GC9A01_CYAN, GC9A01_BLACK, 1);
// État de la moto
const char* state_str = Moto_GetStateString(moto_data.state);
uint16_t state_color;
switch (moto_data.state) {
case MOTO_STATE_NORMAL:
state_color = GC9A01_GREEN;
break;
case MOTO_STATE_WARNING:
state_color = GC9A01_YELLOW;
break;
case MOTO_STATE_DANGER:
case MOTO_STATE_POSSIBLE_CRASH:
state_color = GC9A01_RED;
break;
case MOTO_STATE_WHEELIE:
case MOTO_STATE_STOPPIE:
state_color = GC9A01_MAGENTA;
break;
case MOTO_STATE_RAPID_TURN:
state_color = GC9A01_ORANGE;
break;
default:
state_color = GC9A01_WHITE;
break;
}
GC9A01_DrawString(20, 120, "Etat:", GC9A01_WHITE, GC9A01_BLACK, 1);
GC9A01_DrawString(20, 135, state_str, state_color, GC9A01_BLACK, 1);
// Indicateur d'initialisation
if (moto_data.is_initializing) {
GC9A01_DrawString(50, 180, "INIT...", GC9A01_YELLOW, GC9A01_BLACK, 2);
}
// Statistiques
char stats_buffer[30];
snprintf(stats_buffer, sizeof(stats_buffer), "Samples: %lu", moto_stats.total_samples);
GC9A01_DrawString(10, 210, stats_buffer, GC9A01_GRAY, GC9A01_BLACK, 1);
break;
}
case 1: // Mode jauges
{
GC9A01_DrawString(90, 5, "JAUGES", GC9A01_WHITE, GC9A01_BLACK, 1);
// Jauge de roulis (gauche)
uint16_t roll_color = (fabsf(roll) > 30) ? GC9A01_RED :
(fabsf(roll) > 15) ? GC9A01_YELLOW : GC9A01_GREEN;
GC9A01_DrawGauge(60, 80, 40, roll, -45.0f, 45.0f, roll_color, "ROLL");
// Jauge de tangage (droite)
uint16_t pitch_color = (fabsf(pitch) > 20) ? GC9A01_RED :
(fabsf(pitch) > 10) ? GC9A01_YELLOW : GC9A01_GREEN;
GC9A01_DrawGauge(180, 80, 40, pitch, -30.0f, 30.0f, pitch_color, "PITCH");
// Boussole pour le yaw (en bas)
GC9A01_DrawCircle(120, 180, 35, GC9A01_WHITE);
float yaw_rad = yaw * M_PI / 180.0f;
int16_t yaw_x = 120 + 30 * sin(yaw_rad);
int16_t yaw_y = 180 - 30 * cos(yaw_rad);
GC9A01_DrawLine(120, 180, yaw_x, yaw_y, GC9A01_CYAN);
GC9A01_FillCircle(yaw_x, yaw_y, 3, GC9A01_CYAN);
GC9A01_DrawString(105, 220, "YAW", GC9A01_WHITE, GC9A01_BLACK, 1);
// État en bas
GC9A01_DrawStateIndicator(Moto_GetStateString(moto_data.state),
(moto_data.state == MOTO_STATE_NORMAL) ? GC9A01_GREEN : GC9A01_RED);
break;
}
case 2: // Mode horizon artificiel
{
GC9A01_DrawString(70, 5, "HORIZON", GC9A01_WHITE, GC9A01_BLACK, 1);
// Horizon artificiel principal
GC9A01_DrawAngleIndicator(roll, pitch);
// Informations complémentaires autour
char info_buffer[15];
// Yaw en haut à droite
snprintf(info_buffer, sizeof(info_buffer), "Y:%.0f°", yaw);
GC9A01_DrawString(180, 25, info_buffer, GC9A01_CYAN, GC9A01_BLACK, 1);
// Indicateurs de seuils
if (fabsf(roll) > 30) {
GC9A01_DrawString(10, 200, "ROULIS!", GC9A01_RED, GC9A01_BLACK, 1);
}
if (fabsf(pitch) > 20) {
GC9A01_DrawString(170, 200, "TANGAGE!", GC9A01_RED, GC9A01_BLACK, 1);
}
// Grille d'aide (lignes de référence)
for (int i = -40; i <= 40; i += 20) {
if (i != 0) {
uint16_t y_pos = 120 + i;
if (y_pos > 70 && y_pos < 170) {
GC9A01_DrawLine(70, y_pos, 90, y_pos, GC9A01_GRAY);
GC9A01_DrawLine(150, y_pos, 170, y_pos, GC9A01_GRAY);
}
}
}
// État actuel
GC9A01_DrawStateIndicator(Moto_GetStateString(moto_data.state),
(moto_data.state == MOTO_STATE_NORMAL) ? GC9A01_GREEN : GC9A01_RED);
break;
}
}
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 64;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 10;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x10D19CE4;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, SMPS_EN_Pin|SMPS_V1_Pin|SMPS_SW_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_2, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1|LD4_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SMPS_EN_Pin SMPS_V1_Pin SMPS_SW_Pin */
GPIO_InitStruct.Pin = SMPS_EN_Pin|SMPS_V1_Pin|SMPS_SW_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : SMPS_PG_Pin */
GPIO_InitStruct.Pin = SMPS_PG_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(SMPS_PG_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PB0 PB1 PB2 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : LD4_Pin */
GPIO_InitStruct.Pin = LD4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD4_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */