stm32-moto/Core/Src/main.c

329 lines
11 KiB
C

#include <stdio.h>
#include <math.h>
#include "main.h"
#include "lcd_i2c.h"
#include "icm20948.h"
#include "FusionAhrs.h"
#include "moto_config.h"
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart2;
FusionAhrs ahrs;
MotoData_t moto_data;
MotoStats_t moto_stats = {0};
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
int __io_putchar(int ch) {
HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
// Variables pour le filtrage du magnétomètre
float mx_filtered = 0.0f, my_filtered = 0.0f, mz_filtered = 0.0f;
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_I2C1_Init();
MX_USART2_UART_Init();
// Initialisation de l'écran
lcd_init();
lcd_clear();
lcd_set_cursor(0, 0);
lcd_print("MOTO IMU SYSTEM");
HAL_Delay(1000);
// Initialisation de l'IMU
icm20948_init();
// Initialisation de la fusion AHRS
FusionAhrsInitialise(&ahrs);
FusionAhrsSettings settings = {
.convention = FusionConventionNed, // North-East-Down pour véhicule
.gain = 0.75f, // Gain plus élevé pour réactivité sur moto
.gyroscopeRange = 2000.0f, // Range du gyroscope en dps
.accelerationRejection = 15.0f, // Rejet modéré (vibrations moto)
.magneticRejection = 30.0f, // Rejet élevé (interférences métalliques)
.recoveryTriggerPeriod = (int)(2.0f / MOTO_SAMPLE_PERIOD) // 2 secondes
};
FusionAhrsSetSettings(&ahrs, &settings);
// Initialisation des données moto
Moto_InitData(&moto_data);
uint32_t last_time = HAL_GetTick();
uint32_t init_start_time = last_time;
uint32_t display_update_counter = 0;
while (1) {
uint32_t current_time = HAL_GetTick();
float dt = (current_time - last_time) / 1000.0f;
if (dt >= MOTO_SAMPLE_PERIOD) {
float ax, ay, az; // Accéléromètre
float gx, gy, gz; // Gyroscope
float mx, my, mz; // Magnétomètre
// Lecture des capteurs
icm20948_read_accel(&ax, &ay, &az);
icm20948_read_gyro(&gx, &gy, &gz);
icm20948_read_mag(&mx, &my, &mz);
// Calibration et filtrage du magnétomètre
Moto_CalibrateMagnetometer(&mx, &my, &mz);
mx_filtered = MOTO_MAG_FILTER_ALPHA * mx + (1.0f - MOTO_MAG_FILTER_ALPHA) * mx_filtered;
my_filtered = MOTO_MAG_FILTER_ALPHA * my + (1.0f - MOTO_MAG_FILTER_ALPHA) * my_filtered;
mz_filtered = MOTO_MAG_FILTER_ALPHA * mz + (1.0f - MOTO_MAG_FILTER_ALPHA) * mz_filtered;
// Préparation des données pour Fusion
FusionVector gyroscope = {gx, gy, gz};
FusionVector accelerometer = {ax, ay, az};
FusionVector magnetometer = {mx_filtered, my_filtered, mz_filtered};
// Mise à jour AHRS
FusionAhrsUpdate(&ahrs, gyroscope, accelerometer, magnetometer, dt);
// Récupération des angles d'Euler
FusionEuler euler = FusionQuaternionToEuler(FusionAhrsGetQuaternion(&ahrs));
float roll = euler.angle.roll;
float pitch = euler.angle.pitch;
float yaw = euler.angle.yaw;
// Vérification de la phase d'initialisation
FusionAhrsFlags flags = FusionAhrsGetFlags(&ahrs);
moto_data.is_initializing = flags.initialising;
// Mise à jour de l'état de la moto
Moto_UpdateState(&moto_data, roll, pitch, yaw, gx, gy, gz);
Moto_FilterAngles(&moto_data);
Moto_UpdateStats(&moto_stats, &moto_data, gx, gy, gz);
// Mise à jour de l'affichage (toutes les 5 itérations = ~50ms)
display_update_counter++;
if (display_update_counter >= 5) {
char buffer[21];
for (int line = 0; line < 4; line++) {
Moto_FormatDisplay(&moto_data, line, buffer);
lcd_set_cursor(line, 0);
lcd_print(buffer);
}
display_update_counter = 0;
}
// LED d'état
switch (moto_data.state) {
case MOTO_STATE_NORMAL:
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
break;
case MOTO_STATE_WARNING:
case MOTO_STATE_RAPID_TURN:
// Clignotement lent
if ((current_time / 500) % 2) {
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET);
} else {
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
}
break;
case MOTO_STATE_DANGER:
case MOTO_STATE_POSSIBLE_CRASH:
// Clignotement rapide
if ((current_time / 100) % 2) {
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET);
} else {
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
}
break;
default:
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET);
break;
}
// Debug UART (toutes les 50 itérations = ~500ms)
static uint32_t uart_counter = 0;
uart_counter++;
if (uart_counter >= 50) {
FusionAhrsInternalStates states = FusionAhrsGetInternalStates(&ahrs);
printf("R:%.1f P:%.1f Y:%.1f | St:%s | AE:%.1f ME:%.1f | AI:%d MI:%d | Smp:%lu\r\n",
roll, pitch, yaw,
Moto_GetStateString(moto_data.state),
states.accelerationError, states.magneticError,
states.accelerometerIgnored, states.magnetometerIgnored,
moto_stats.total_samples);
uart_counter = 0;
}
// Mise à jour du timestamp
moto_data.last_update_time = current_time;
last_time = current_time;
}
// Petite pause pour éviter la surcharge du processeur
HAL_Delay(20);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 64;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 10;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
static void MX_I2C1_Init(void)
{
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x10D19CE4;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, SMPS_EN_Pin|SMPS_V1_Pin|SMPS_SW_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SMPS_EN_Pin SMPS_V1_Pin SMPS_SW_Pin */
GPIO_InitStruct.Pin = SMPS_EN_Pin|SMPS_V1_Pin|SMPS_SW_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : SMPS_PG_Pin */
GPIO_InitStruct.Pin = SMPS_PG_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(SMPS_PG_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LD4_Pin */
GPIO_InitStruct.Pin = LD4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD4_GPIO_Port, &GPIO_InitStruct);
}
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
#ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */